Processing math: 100%

Formula of Integral Calculus | Basic Integration Formulas | ইন্টিগ্রেশন ক্যালকুলাস এর সূত্রসমূহ

✪➤ Formula of Integral Calculus | Basic Integration Formulas
☞ The remark that integration is (almost) an inverse to the operation of differentiation means that if
\frac {d}{dx}f(x) = g(x)       [Differentiation]

then,  \int g(x) dx = f(x) + c        [Integration]

✪Most Used Formula:

\int dx= x+ c

\int x dx = \frac{x^2}{2}+c

\int x^n dx = \frac{x^n+1}{n+1}+c

\int e^x dx = e^x+c

\int e^{mx} dx = \Large \frac {e^{mx}}{m}+c

\int e^{-mx} dx = \Large \frac {e^{-mx}}{-m}+c

\int \frac{1}{x} dx= log x+c

\int \sin x\; dx= -\cos x\;+c

\int \sin mx\; dx= \Large \frac {-cos mx}{m}+c

\int \cos x\; dx= \sin x\;+c

\int \cos mx\; dx= \Large \frac {sin mx}{m}+c

\int sec^2 x dx= \tan x\;+c
\int cosec^2 x dx= -\cot x\;+c
\int \sec x\; \tan x\; dx= \sec x\;+c
\int cosecx \cot x\; dx= -cosec x+c

\large \int \frac {1}{1+x^2} dx= tan^{-1} x+c

\large \int \frac {1}{\sqrt{1-x^2}} dx = sin^{-1} x+c

\int \frac {f'(x)}{f(x)} dx= log f(x)+c

\int uv dx= u \int v dx - \int[ \frac {d}{dx}(u) \int vdx ]dx + c


📗 Download as PDF

📗 Download as Picture


Made By Sbook99



Thank You for Reading.
Share:

Related Posts:

কোন মন্তব্য নেই:

একটি মন্তব্য পোস্ট করুন

Popular