Formulas of Differential Calculus | Derivative Rules | ক্যালকুলাস এর সূত্রসমূহ
\frac{d}{dx}(c) = 0 [where, c is single constant]
\frac{d}{dx}(cu) = c \frac {d}{dx} (u) [where, c is with a variable]
\frac{d}{dx} (xn) = nxn-1
\frac{d}{dx} (\sqrt {x})= \frac {1}{2\sqrt{x}}
\frac{d}{dx} (ex)= ex
\frac{d}{dx} (emx)= memx
\frac{d}{dx} (e-mx)= -me-mx
\frac{d}{dx} (loga x)= \frac {1}{x} logae
\frac{d}{dx} (log x)= \frac {1}{x}
\frac{d}{dx} (sin x)= cos x
\frac{d}{dx} (sin mx)= m cos mx
\frac{d}{dx} (cos x)= - sin x
\frac{d}{dx} (cos mx)= - m sin mx
\frac{d}{dx} (sec x)= sec x. tan x
\frac{d}{dx} (cosec x)= -cosec x. cot x
\frac{d}{dx} (tan x)= sec2 x
\frac{d}{dx}3 (cot x)= -cosec2 x
\frac{d}{dx} (sin-1) = 1 \over { \sqrt{1-x^2 }}
\frac{d}{dx} (cos-1)= -1 \over { \sqrt{1-x^2 }}
\frac{d}{dx} (tan-1)= \frac{1}{1+x^2}
\frac{d}{dx} (uv)= u \frac {d}{dx} (v) + v \frac {d}{dx} (u)
\frac{d}{dx} (uvw) = vw \frac {d}{dx} (u) + uw \frac {d}{dx} (v) + uv \frac {d}{dx}( w )
\frac {d}{dx} (\frac {u}{v}) = \frac{v\frac{\mathrm{d}}{\mathrm{d} x} ( u )-u\frac{\mathrm{d} }{\mathrm{d} x} ( v )}{v^{2}}
📗 Download as PDF
💎Download as Picture
Thank You for Reading.
বইের মতো করে দিলে ভালো হয় ♥️♥️♥️
উত্তরমুছুন